# An Algebraic Approach to the Design of Block Ciphers

José Valença

Óscar Pereira

Tiago Oliveira

{ jmvalenca, oscar, tfaoliveira }@di.uminho.pt

#### HASLab, INESC TEC & Univ. of Minho (PT)



Mathematical Methods for Cryptography

Svolvær, Lofoten, Norway September 2017



In the beginning...

# ... there was Óscar's MSc thesis

Wanted to build a (symmetric) cipher, using:

- APNL (Almost Perfect Non-Linear) functions
- **CRT** (Chinese Remainder Theorem)

# **GOAL: simple algebraic description**

# And speaking of GOALs...

# We also aim to...

• Being able to formally reason about security

• Have a reasonably efficient implementation

On the latter goal, we're not quite there yet...

# **Cipher structure**

• Confusion-Diffusion Permutation (CDP)

• Round (basically a keyed CDP)

• Substitution-Permutation Network (SPN) — iterated round

#### **CDP version 1**

$$\mathcal{X}_q \xrightarrow{\mathsf{mod}_q} \Pi_q \xrightarrow{\mathcal{S}} \Pi_q \xrightarrow{\mathsf{crt}_q} \mathcal{X}_q$$

- $\mathcal{X}_q \rightarrow \text{ring } GF(2)[x]/\langle \Phi_{257} \rangle$ , where  $\Phi_{257} = 1 + x + x^2 + \dots + x^{256}$
- $\Pi_q \rightarrow \text{product ring}$

 $\prod_{i=0}^{15} GF(2)[x]/\langle q_i \rangle$  where each  $q_i$  is **irreducible** and with degree 16

•  $S \rightarrow$  layer of Sboxes, aligned with the  $q_i$ 's

#### **CDP version 1**



# **Problems:**

• "good" sbox layer requires prod. ring with odd degree factors

• key mixing also in  $\mathcal{X}_q$  ( $\cong \Pi_q$ )  $\rightarrow$  hence it is **block-wise** op, i.e. little actual mixture

#### CDP version 2

$$\mathcal{X}_p \xrightarrow{\mathsf{mod}_p} \Pi_p \xrightarrow{\mathcal{S}} \Pi_p \xrightarrow{\mathsf{crt}_p} \mathcal{X}_p$$

•  $\Pi_p \rightarrow$  prod. ring, with  $p_i$  **irreducible** and of deg 9 or 11 [(11 × 5 + 9) × 4 = 64 × 4 = 256]

•  $\mathcal{X}_p \rightarrow \text{ring over } GF(2)$ , with modulus  $\prod p_i$ 

# This is what is really implemented

#### **CDP: two views**

#### $\mathcal{F}_\mathcal{S}$ is such that makes the diagram commute



**Goal:** reduce analysis to studying  $\mathcal{F}_{\mathcal{S}}$ 

#### Round



- Most operations can be stored as pre-computed matrices
- *Multiplicative key*: op. done in  $\mathcal{X}_q$  (not  $\mathcal{X}_p$ )
- **MK**: increases the **algebraic degree** of equations? (i.e. increases resistance to algebraic cryptanalysis?)

#### Is it secure?

# A tentative argument...

- APNL / AB strengthens differential immunity
  - And to some extent, linear immunity...
- Niho exponents (APNL power functions) increases algebraic immunity

(cf. J. Cheon and D.H. Lee, *"Almost Perfect Nonlinear Power Functions and Algebraic Attacks"*, 2004)

# **Three ending notes**

• More of a "framework for ciphers" than a cipher per se

• Diffusion matrices

• A (tentative) lattice-based attack

**Diffusion matrices** 

# **Prob. of output weight** *r*, when input has weight $\ell$ ?

•  $||F|| = Prob[F \neq 0]$  •  $\psi_r(x) = 1$  iff hw(x) = r

$$DM_{\ell,r} = \|(\psi_r \circ F) \times \psi_\ell\| / \|\psi_\ell\|$$

- Spheres not centered in **0**: flipping bits in arbitrary vectors
- Size is  $(n + 1) \times (n + 1)!$

# The lattice attack (KPA)



- Resembles Coppersmith ( $deg(s, \mu, \nu) < blocksize$ )
- Extends Cohn & Heninger (2013)

So to conclude...

# Feedback is welcome:

• Efficiency improvements

• The algebraic aspects (starting with the mult. keys)

# Questions...

